Androgen receptor coactivators that inhibit prostate cancer growth.
نویسندگان
چکیده
It is well documented that androgen receptor (AR), a steroid hormone receptor, is important for prostate cancer (PCa) growth. Conversely, however, there is increasing evidence that activation of AR by androgens can also lead to growth suppression in prostate cells. AR mediated transcription is regulated by a number of different transcriptional coactivators. Changes in expression level or cellular localization of specific coactivators may play a crucial role in this switch between proliferative and anti- proliferative processes regulated by AR target gene programs. In this review, we discuss the expression and function of several AR coactivators exhibiting growth suppressive function in PCa, including ARA70/ELE1/NCOA4, androgen receptor coactivator p44/MEP50/WDR77, TBLR1, and ART-27. In luciferase reporter assays, they all have been shown to activate AR mediated transcriptional activation. ARA70 exists in two forms, the full length nuclear ARA70α and internally spliced cytoplasmic ARA70β. For p44 and TBLR1, we identified nuclear and cytoplasmic forms with distinct expression and function. In comparison of their expression (ARA70α, p44, TBLR1 and ART-27) in prostate, these coactivators are expressed in the nucleus of benign prostate epithelial cells while they are more predominantly expressed in cytoplasmic form (ARA70β, cytoplasmic p44 and TBLR1) in PCa. Consistent with their nuclear expression in benign prostate, the nuclear form of these coactivators inhibit PCa growth targeting a subset of AR target genes. In contrast, the cytoplasmic versions of these proteins enhance PCa growth and invasion. Interestingly, first characterized as an AR coactivator in luciferase assays, ART-27 functions as corepressor for endogenous AR target genes. Importantly, the growth inhibitions by these nuclear proteins are androgen-dependent processes and the regulation of invasion is androgen-independent. Understanding the molecular switches involved in the transition from AR dependent growth promotion to growth suppression and dysregulation of these coactivator proteins promoting androgen-independent invasion may lead to identification of novel therapeutic targets for PCa.
منابع مشابه
A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy.
The development and growth of prostate cancer depends on the androgen receptor and its high-affinity binding of dihydrotestosterone, which derives from testosterone. Most prostate tumors regress after therapy to prevent testosterone production by the testes, but the tumors eventually recur and cause death. A critical question is whether the androgen receptor mediates recurrent tumor growth afte...
متن کاملAndrogen receptor in prostate cancer.
The normal development and maintenance of the prostate is dependent on androgen acting through the androgen receptor (AR). AR remains important in the development and progression of prostate cancer. AR expression is maintained throughout prostate cancer progression, and the majority of androgen-independent or hormone refractory prostate cancers express AR. Mutation of AR, especially mutations t...
متن کاملRole of SRC-1 in the promotion of prostate cancer cell growth and tumor progression.
Prostate cancer is initially androgen dependent and there is evidence that androgen receptor continues to play a role in androgen-independent prostate cancer. Androgen receptor activity depends both on the level of androgens and on the level of coactivators that interact with androgen receptor. Our goal was to evaluate the role of the androgen receptor coactivator SRC-1 in prostate cancer progr...
متن کاملFrom HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells.
Overexpression of the HER2/Neu protooncogene has been linked to the progression of breast cancer. Here we demonstrate that the growth of prostate cancer LNCaP cells can also be increased by the stable transfection of HER2/Neu. Using AG879, a HER2/Neu inhibitor, and PD98059, a MAP kinase inhibitor, as well as MAP kinase phosphatase-1 (MPK-1), in the transfection assay, we found that HER2/Neu cou...
متن کاملSteroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth.
PURPOSE Castration-resistant prostate cancer (CRPC) may occur by several mechanisms including the upregulation of androgen receptor (AR), coactivators, and steroidogenic enzymes, including aldo keto reductase 1C3 (AKR1C3). AKR1C3 converts weaker 17-keto androgenic precursors to more potent 17-hydroxy androgens and is consistently the major upregulated gene in CRPC. The studies in the manuscript...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of clinical and experimental urology
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2014